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SHOCK WAVES IN A LIQUID CONTAINING VAPOR BUBBLES
R. I. Nigmatulin, V. Sh. Shagapov, UDC 532.529.5.533.6.011,72
N. K. Vakhitova, and Z. A. Shikhmurzaeva

The structure of shock waves in a liquid containing vapor bubbles is investigated, and an ex-
planation is given for the mechanism of the anomalously high pressures in shock waves propa-
gating in certain vapor~—1liquid media.

Condensation Shock

When a weak shock wave propagates in a liquid containing vapor bubbles, the temperature of the liquid
does not change appreciably, Consequently, with the attendant increase in pressure and, hence, in the saturation
temperature of the system the postshock vapor becomes supercooled, resulting in its condensation. Situations
are therefore possible in which a shockwave reduces a two-phase mixture to a single-phase mixture.

Accordingly, the formulation of problems for bubbly liquids with allowance for the possibility of the an-
nihilation of bubbles must incorporate sheets or boundaries Fit2) separating regions of single- and two-phase
flow. On these sheets F @2 , which are aptly called condensation shocks, it is necessary to set up boundary con-
ditions analogous to those on sheets of discontinuity.

We consider the stated conditions in a coordinate system wherein the sheet FU2) is at vest. The two-phase
state (with bubbles) of the medium ahead of this shock is designated by the index 0, and the state of the medium
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after the shock (in the form of a single-phase liquid) by the index e. Then the laws of conservation of mass,
momentum, and energy, neglecting the mass, momentum, and energy of the bubbles in comparison with the
same parameters for the liquid, acquire the form.

0 0
CipP 10Uy = P1ele,

30 UG + po = 03 V5 -+ pos (1)
2 2

v v
“zop?ovo [“2_0 + Ry + um] + oty = P?eve [—‘2_ + u,e] + p.U,-

Here kyq is the kinetic energy of small-scale radial motion per unit mass of liquid before the shock F2) s 04,
volume content of liquid before the shock; uyy, v, Dy, Specific internal energy of the liquid, the velocity, and the
mean pressure of the medium before the shock; and uy,, Ve, Pe, Same parameters of the liquid after the shock;
also,

20

Po = %ypPis + Az (Pao - ) v Pe= Prer Qgg = 1 —0y. @)

¢

Knowing that the volume concentration of the bubbles is small ({¥4;<<1), from now on we let p,=py,, and for the
pressure of the host liquid we assume a linear equation of state:

i po = Ci (pf — po). (3)
From the mass balance equation at the shock [first equation (1)] in conjunction with the equation of state

(3) we deduce

ple = plo (1 - o (P, — 1),
1 + (“c’lazq)(Pe - 1)
[ +a (P, —1)

Po Pe)
o, = , Pp="—"1 .
( el p

/

(4)

Ly — Ue = Uyl

Then from the equation of momentum conservation at the shock [second eqguation (1)] we obtain an expression
relating the shuck strergth pg to its velocity Dy =—v, relative to the preshock (upstream) medium:

1 + o (P - 1)
D2 = 02 = Po Pl ) € . (5)
T Yo 1+ (@e/am)(P, — 1)
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It is evident from this relation that the influence of the compressibility of the host liquid is embodied in
the last cofactor. Thus, the compressibility of the liquid is insignificant, i.e., the entire compression of the
mixture takes place through the bubbles if and only if

e

(P~ 1) = Lo B L. (©)
Cog O(«Qoploci

O, =

This condition holds for ay,~10"1, p§; ~10% kg/m?, and C;~10® m/sec if pe — p, € 10? bar.

From the second equation (4) and from (5) we readily deduce an expression relating the velocity variation
to the pressure at the condensation shock:

22 9
Auezvg——z;:!/—a??fgo—(lje—l) <1+-2260+0(6;)). (7)

%P1

From the energy equation at the shock [third equation (1)] we obtain

2 2 -

2 Pe Do U, — Up

Uje— U = Ryp— =%~~~ 5 .
Pie Pro%yg 2

(8)

In cases where the influence of the compressibility of the host liquid is slight, i.e., where the inequality (6) or
[pde ~ pdy! < pi, is valid, Eq. (8) can be rewritten

Uag Pe | Pe—Po 8 (9>

Uge—Ugg = Ry — — 2= + i c-
Pro

From the first and second equation (1) we readily obtain the relation

Po 4 (Po%0)* 8o = Pe i~ (Po¥0)* e (10)
1 1
o = oty Fg=—, o= —5 .
Bo Ple
Here p, is, with regard for the neglected mass of the bubbles, the mean density of the preshock mixture, and
4 is the specific volume of the mixture.

A schematic shock diagram of a bubbly vapor—liquid mixture is shown in Fig. 1. Curve 1 is the shock
adiabat of the mixture. The curve p¢) has a very mild slope in the region of the original equilibrium (k;,=0)
two-phase state. This result is attributable to the fact that the vapor pressure in slow compression of a bubble
scarcely increases, owing to condensation of the "excess" vapor mass. The slope of the curves at point 0 is
determined by the equilibrium sound velocity c(©) sometimes called the Landau sound velocity [1], which is very
small in such a mixture; in particular, it is much smaller than the same velocity in a mixture containing gas
bubbles. When ¢~ 1/p{;, i.e., when practically all the bubbles vanish, the compressibility of the medium is
equal to that of the liquid, and so the diagram ostensibly acquires a sharp bend. It will be shown later that such
a strong nonlinearity of the shock diagram induces a substantial increase in the pressure in the reflection of a
wave or shock pulse of sufficient duration from a rigid wall. Curve 2 in Fig. 1 is the shock adiabat for a liquid
containing gas bubbles of constant mass. The line Oe connecting the points corresponding to the preshock (0)
and postshock (e) states of the mixture is called the Rayleigh— Michelson line. The slope of this line is deter-
mined by the factor (povo)z, i.e., bythe shock velocity.

Reflection of the Condensation Shock from a Rigid wall

Hereinafter we use the indices 0, e, and f to designate, respectively, the parameters ahead of the incident
shock, after the incident and before the reflected shock, and after the reflected shocks. If the intensity of the
incident shock is large enough to elicit complete condensation of the vapor, Dy will be given by expression (5).
Setting v, =0, we can determine the particle velocity of the liquid after the incident shock from (7). Also,
pip = o10, Dy Gy,
because the reflected shock travels through a low-compressibility single-phase liguid, for which the curve
p(p™1) can be considered linear up to pressures ~10%-10 bar.

In light of the foregoing we deduce an expression for the pressure after the reflected shock:



Ps — 14, Po Pe 1, A= I//Eﬁ 032 (11)
Pe Pe Po Cw Py

which indicates the degree of intensification of the shock wave in the vapor—Iliquid mixture upon relfection
from a rigid wall in the case where the incident shock elicits complete condensation of the vapor and the com-
pressibility of the liquid is felt only in the reflected shock. For comparison we give the corresponding relation
for a gas—liquid system comprising & mixture of an incompressible liquid with gas bubbles of constanf mass:

pilpe = p/Po (12)
and the relation for a low-compressibility linear acoustic mediums
P _o_ Y (13)
Pe PelPo

A diagram of the pressure ratio pf/ Py is given in Fig. 2 for plane shock waves reflected from a rigidwall
in a steam—water mixture (curves 1, 1', 17, 1" p,=1 bar, T,=373K), anair—water mixture (curves 2, 2, 2", 2m,
pp=1 bar, T=273"K), and an acoustic medium (curve 4). The numbers 0.01, 0.05, and 0.2 indicate the values of
the initial bubble concentration. The deviation of curve 1 from the dashed curve for small values of pe/Pq
(view A) is associated with the incomplete condensation of the vapor after the shock. The deviation of curves
2, 2", 2" and 2" from the line 3 is associated with the advent of compressibility of the liquid in sufficiently
strong shocks.

It is apparent from expression (11) and from Fig. 2 that a shock wave in a vapor—1liquid mixture can be
very greatly amplified in reflection. For example, in the case of a steam—water mixture with initial parameters
py=1 bar, pJ,= 10% kg/m?, C,;71500 m/sec, and ay=0.1 (A¥ =50), after the reflection of waves with pressures
pe =2 bar and pe =5 bar the pressures at the wall become equal to pg =52 and 105 bar, respectively. This
amplification increases with the volume vapor concentration.

Structure of Time-Invariant Shock Waves

We consider the one-dimensional time~invariant motion of a liquid containing vapox bubbles under the
usual conditions for two-phase monodisperse media [2, 3]. Following Nigmatulin [2]}, in the one-velocity ap-
proximation we write the equations of continuity and momentum for the mixture, the equations describing the
laws of mass variation for a solitary bubble and a set of bubbles, and the equations for the variation of the bub-
ble radins and radial motion of the liguid:

;—x(Pv)=0, pv% =—%, v%(%aspg) = 4na?j,
;—xm):o, (14)
da i dw 3 v '”'2“”"_’2(1E
v-gx— :&‘1—1‘—?}1—, av—dx‘— —{——2—w1 -+ 4_ai_wi:h—_p?

(0= pi (I —01) -+ p5 ty, Oty = —g—na%) .

Here p, pj, Pj» @, W; are the mean density of the mixture and the true density, pressure, volume concentration,
and particle velocity of the i-th phase at the phase interface. Inthe last equation (equation of radial motion of
the liguid) the differential pressure created at the bubble wall by phase transitions is neglected.

From nowonwe use the indices 1 and 2 to refer the parameters to the ligquid and vapor phases, respec-
tively.

An analysis of the behavior of a vapor bubble with an abrupt change of the pressure in the liquid shows
[2, 4] that for temperatures and pressures of the medium not too close to the critical values the temperature
nonuniformity of the vapor in the bubble interior is inconsequential. Then the thickness of the temperature
boundary layer in the liquid is usually much smaller than the mean distance between the bubbles. Consequently,
the heat and mass transfer around the vapor bubbles can be described by the heat-conduction equation for the
liquid in the spherically symmetrical approximation; if we neglect the compressibility of the liquid, this equa-
tion has the form
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picy (v %T’ +w, o, ) 10 (fz}q oT, ) ,
X /

or 2 o or {15)
a 2
w, = (—) w, (0<<r<Coo).
r
At the interface (r=a) we specify the boundary conditions
. oT
T =T, (ps), Gor+ Goz = —Jb, Gor = — My 5 L,
g (16)

9 v»di—w ~p0}v£m—w\)fj
ot T 2( a0

Under the condition of homogeneity of the pressure inside the bubble (homobaricity condition) [4] we can
write the equation for the pressure in the vapor phase

d —
o 4P _ 3ly—1) Gog — 3vps ;. am)
dx a a

We further add the equations of state of the phases
p1=po+ Ci(E¥ —pl), p2= pIR,Ts. (18)

The system of equations (14) admits the first integrals
PO == PgUy = My, AU = Ay, 19)
p1 -+ 1m0 = po + M0y,

which express the conservation of the number of bubbles and the mass and momentum of the mixture. The
additional subscript 0 refers to the parameters of the initial equilibrium state.

From the mass and momentum integrals (19) we readily obtain a one-to-one relation between the pressure
and the density for a time-invariant shock wave:

P+ (00ve)?8 = po + (PoTe)*y (O = 1/p). 20)

It is evident from this expression that in a time-invariant shock wave the transition from state 0 to statee takes
place along the Rayleigh— Michelson line,

For the ensuing discussion we write the equation for the variation of the kinetic energy of radial motion
of the liquid per single bubble, deriving it from the equation of radial motion:

1 dk 20 0
9y ( P2— pr— T) — gn___p‘;" w, k= 2np] a%e? (w = w,). 21)

a:  da

Analysis of the System Under the Condition of Constant

Pressure in the Bubble Interior

We analyze the system of differential equations given above for the case py=p,. This case obtains when
the temperature of the bubble wall remains constant because of the large thermal conductivity of the liquid or
because of continual restoration of the bubble wall by relative motion. Also, to economize on the calculations
we neglect capillary effects, viscosity effects, the mass content of the vapor, and the density of the vapor in
comparison with the density of the liquid. Then from Egs. (16) and (14) we obtain

U= Up [l — g (1 — D3], py= po 4 p? (1 — ) U (Vg — V),

(22)
da dw 3 Ps— P : a )
P AP St 2 (R S I
dx dx + 2 p? (pz Po ()
whence we infer that
d w? 3 2
a— [ — R = gy (1 — gy ) U (D — 1), (23)
da ( 2 ) + 2 ..0( ‘ 20) 0( )
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The solution of the latter equation subject to the condition w(a) =0 has the form

R g (1 — atgg) U2 (D_s/z . Dg/g)z _ Pe —’Opo (D_e,/z n D3/2)2. 24)
3 301
Then fromthe first and third equations (22) we have
D
(1 =% (=0 , x [ota (1 — ag)/ 3112 . (25)

D32 pire %

or

Here the constant of integration is determined from the condition D=0 at x=0. The first two relations from (22)
and the resulting solutions (24), (25) determine the "structure" of the time-invariant shock wave in parametric
form (with D as the parameter). The kineticenergyof radial motion of the liquid in the investigated process is
expressed by the equation

201030 (1 — tap) U @)

- (D_a/z . D3/2)ZD3 p?- (26)

k1=

From this relation we can find the quantity ky at the instant of bubble collapse (D— 0}):

by = 2natgg (1 — ) 03 a3 o o ﬂ 2 Pe—Po
3 I T R
which has a finite value. If all of this kinetic energy is converted into heat after bubble collapse, the resulting
increase in the temperature of the liquid mass m associated with a solitary bubble, estimated according to the

equation

ATZE:__%L&;_&(mzimgp?l_ﬂa), @7)
mey 1—oay 20104 3 Clop

is usually negligible. The characteristic pressure increase p', =pg +Ap in the unit cell (associated with the
solitary bubble) after bubble collapse can be estimated similarly, assuming that the enti-e kinetic energy of
radial motion of the liquid mass m is converted at the instant of collapse into energy of elastic compression
of the bubble:

Py

k1f —m j‘ é’ dp? ~m (pf)zo— (p;_)z_ . (2 8)
P (01)? 2 (010)Ch

Here, in computing the integral describing the work of the internal compression forces, we have faken into

account the low compressibility of the liquid (pf—pJ,<p{y) and its acoustical equation of state. Substituting
the values of m and ky¢ into (28) and solving the resulting equation for pg, we obtain

e Po 09CT (29)

V)
=, 1
pi=p l/ + e p. T—am

For example, if pg =2p=2 bar, 09;=0.05, and C;=1500 m/sec, then pg =~ 30 bar, corresponding to the magnitude
of the oscillating pressure peaks in shock waves in experiments [5, 6].

We now estimate the influence of viscosity on the structure of a time-invariant shock wave on the basis of
the solution obtained above. From Eq. (21), using the first and second relations (22) and relations (5), and
neglecting the compressibility of the liquid and capillary effects, we obtain an expression for the kinetic energy
of radial motion at the instant of bubble collapse:

v

Ry = _%f. a’ &gﬂ — by, ky= 81V S‘wada. (30)

an

In (30) we can establish the following upper bound for the quantity k,, expressing the viscosity-dispersed energy,
making use of expression (24):

by <ky =

96 ;ta%w [ P? (Pe3— Po) :ll/s_ (31)
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Fig. 3. Structure of a time-invariant shock waye in the inertial regime of bubble collapse.

Fig. 4. Structure of a time-dependent shock wave in a bubble vapor—liquid mixture with oscillat-
ing pressure peaks induced by bubble collapse.

Fig. 5. Calculated curves for the structure of a time-invariant shock wave in a bubbly
steam—water mixture.

Thus, for the kinetic energy of radial motion at the instant of bubble collapse we have the lower bound

_ A /ST 0
kif>4_“agu(1,__lfi_f‘~ HL) (32)
3 2V'3 a Pe—Po

For bubbles with radii @, ¥107%-10* m in water the influence of viscosity can be neglected, and only in a very
finely disperse mixture with a; ~107% m can the viscosity have any appreciable influence.

For a low volume concentration of bubbles (v, <<1) the motion of the latter relative fo the liquid (two-
velocity effect) has very little influence on the distribution of the parameters of the liquid (p~py, v™w), and so
the given motion can be determined from the equation of motion of the bubbles according to the distribution of
v and py determined from the one-velocity approximation. If we neglect the viscosity of the liquid and take into
consideration that the relative velocity of the phases is small, [vy—vy |~ lv,=v{|<v,, and the inertia of the bub-

ble is determined by its additional mass, we obtain the equation of motion of the bubbles in the form {2, 3]
21 0 d 3 4n 3 dp
L 01Uy ——(a%Yyy) = — —— 0P — (U R Uy R Ty,
3 019 in (@%v5) 3 dx ( 1 o

Ugp = Uy ~— Uy, PPy (33)

Now, making use of the fact that the velocities of the phases coincide ahead of the shock wave, i.e., vj3=0 at
a =ay, and invoking Eq. (24), we obtain
Uyg = g (1 — Otg) 0 (D72 — D). (34)
For the motion of the bubble relative to the liquid, using (24), we write

X a

¢ v e
Al = f)i—zdx:‘}i@da:mﬁ’?)a%(l—wcgo) (
u w

—c a,

1/2 5/2
1;1?2 —D 5 1)' (35)

It is evident from this equation that the relative displacement increases with compression of the bubble. Ata
certain value of the radius g the displacement of the bubble relative to the liquid becomes commensurate with
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the radius, so that the liquid at the surface of the bubble is replenished and heat transfer is intensified. Inas-
much as the heat- and mass-transfer rates in a liquid containing vapor bubbles are limited by the heat resis-
tance of the liquid, ignoring the flow of liquid around the bubbles in Egs. (15)~(17) will make the heat~transfer
rate too low.

Calculation of the Structure of the Shock Wave with Radial

Heat and Mass Transfer

Eliminating g, by means of relations (16) and making use of the condition of conservation of the mass of
the bubbles, i.e., the third equation (14), we write expression (15) in the form

@2+[W—lﬂ wz]U@S__SW—D (Maﬂ)__wm_nﬁm (36)

(s = pa/pi).

¢ i - dx a or (1—9a

1 —s pg
It is important to note that this equation corresponds to the case in which the thermal diffusivity of the vapor is
large enough to permit the temperature inside the bubble to follow the wall temperature, We can also analyze
the opposite extreme of a small thermal diffusivity of the vapor, such that a uniform~temperature regime is
realized. In this case the equation for p, follows from (17) for gg» =0. Calculations have shown, however, that
both extreme cases in the determination of p; yield practically the same results.

For numerical calculations we introduce the dimensionless variables

v w J T
U= ,W:__’P:L7(I)2:_e%_,91:_i_,
a, a, Po P20 Ty
X 7 k 1/2
X me L ke o ()
Qg 2 2naop, b1

After suitable transformations the system (14)~-(18), (36) takes the form

Ud_D_:W/, D[]_d_u'i/__:_;31}(/2_1_1:v2_p1__(z*__V_*Wy
dX dx 9 D D
Uﬂzl__@_(‘;h*‘zez 06, W _D_ 26_6,
T dX R? 3R \ R R/ 4R
ADU dP, \# 08\  LDW . 37)
3 dX "\ 0R /b [—s

U=Ui[1—ay(l—D%], P,=1 +“20(1—°‘20)U%(1—D3),

1 ,
Py=®0,(Py), Ko =DW2, A~ [ L Y g —a,0)),
—1 (1—986, v—1
o — de, _ 8, (0*: 20 vt 8v ,
dP, O,L Doty T @ty
NE e Ay M= P?C1 I — lp§0 ) .
p(l)ciaoa* PgoR2 Po

The penultimate member of this set of equations is the Clausius—Clapeyron equation in dimensionless form.
For the numerical solution of Egs, (37) it is necessary to analyze the asymptotic behavior of the solution of this
system near the initial preshock equilibrium state. Accordingly, the system is linearized with respect to the
values of the parameters at the point 0, and a solution is sought in the form of an exponential function decaying
as X— — oo

U=Uy+ Avexp(KX), W = Awexp (KX), Py =1+ Ap, exp(KX), (38)
Oy, =1+ Ag,exp(KX), D=1+ Ap exp(KX), 0, =1 Ay, exp (KX).
The condition for the existence of a solution in this form yields an equation for the determination of K.

It can be proved that the corresponding characteristic equation for K has one and only one positive root
for Pg <1. Inthe case Py > 1 such a root does not exist. The system (37) therefore has a unique solution
describing the structure of the compression shock.



The integral curves of the system of equations (37) admit translation along the X axis. We therefore fix
a certain value of D at X =0; D must be made close enough to unity for the linear solution to be valid in the
region X =0, The values of the ofher parameters at X =0 are determined from the linear algebraic equations
obtained by substituting a solution of the form (38) into the linearized system.

These quantities determine the initial conditions for the numerical solution of the nonlinear system of
equations (37) in the region X > 0. To facilitate the numerical calculations we "freeze" the bubble radius by
transforming to the new variable £ =R/D and reducing the heat-conduction equation to the form

g (& L Ny 708 RF 00 (39)
ax e | o | D2 oo

D gD

The problem has been solved by a finite-difference procedure, where the exterior of the individual bubble is
partitioned into spherical layers. The heat-conduction equation (39) goes over to a system of n ordinary dif-
ferential equations. For the latter we arrive at the Cauchy problem, which has been solved on a computer by
the Runge—Kutta method. The number of layers was varied, being chosen in such a way that its increment
would have scarcely any influence on the results.

The preshock equilibrium state is associated with the point 0, which is a singularity of the system of dif-
ferential equations. To avoid the singularity it is necessary to analyze the asymptotic behavior ag X—~—.

We can analyze the asymptotic behavior around the end state, By contrast with a liquid containing gas
bubbles, where close to the final equilibrium state the system of differential equations admits a linear asymp-
totic representation, in the given case it is impossible to obtain the behavior of the solution involving bubble
collapse in a finite analytical form. Numerical calculations show that for fairly weak shocks (for example, in
the case of water with p, ®1 bar, a, ~10-3 m, and pe/po 22) the last stage of collapse takes place in the pure
thermal regime, where the radial inertia of the liquid has virtually no effect and it can be assumed that P;~P,.
In this case, from the third equation in conjunction with the fourth and fifth relations (37) we obtain

[__LPZ — AP, — 1)D3}W:n7»* (—ae’ ) (40)
0, (Pa)(1 — ) R I»

Py~ Py= 14+ (P,—1(1 —D?%.
This equation must be solved simultaneously with the heat~conduction equation. If the compression process is

sufficiently slow for the temperature distribution around the bubble to become restructured, acquiring the same
profile as for steady-state heat transfer around a sphere:

91: (es(P?)'_ 1) + 1 (NU-‘:Q),
R
then from Eq. (40}, neglecting D® terms in comparison withthe end ferms, we obtain

_ pEP— 1 X (41)
B [2P,U, '

D?

From the above stated assumption underlying the validity of the given solution we deduce an estimate for the
shock intensity:

Po— Po L Apr =
’ ¢,To P?

For example, in the case of 2 steam—water mixture with p;=1bar we have Ap=0.025bar, i.e.,the solution (41)
is valid for very weak shock waves. For liquid nitrogen containing nitrogen vapor with p;=1 bar and T;=77.3K
we have p=0.1 bar.

Results of the Calculations and Conclusions

On the basis of the system of differential equations (37) we have carried out numerical calculations by the
procedure described above. However, before presenting and discussing the results we consider the singular
aspects of the behavior of the vapor bubbles with an increase in the pressure. The collapse of a vapor bubble
is determined by the radial inertia and thermal conductivity of the liquid. It can have the nature of either ac-
celerated collapse for p; < py [in particular, similar to (26), when p, =p,] or comparatively slow (monotonic or
oscillating) gradual vanishing of the bubble for p, = py [in particular, similar to (41)]. To assess the nature of
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the collapse we can use the parameter B proposed in [7] (see also [2]), which is equal to the ratio of the charac-
teristic collapse time ' =aYp{/Ap if it were limited only by the inertia of the liquid to the collapse time tp =
@/ (vyp =J3a%) (vy1 =M/ p{ cq) if it were limited only by the thermal conductivity of the liquid (B=t'/tT). For
large values of B 310 the process is limited by the inertia of the liquid and is close fo the collapse acceleration
regime (26) with a value of the kinetic energy of radial motion k; commensurate with k. For small values of
B £0.05 the process is limited by the thermal conductivity of the liquid and has the nature of comparatively
slow collapse if ky <lg7.

When B <1, the process does not manifest the compressibility of the host liquid, in which case k; =0 and
P1 ®py, and the transition from state 0 to state e takes place along the Rayleigh—Michelson line. In this case a
time-invariant shock wave exists, its structure described by the solution of the system (37).

For B >1 the inertial collapse regime in the state corresponding to the point e' (or close to it) prevails,
and the kinetic energy of radial motion is finite. Consequently, the point e' in this case does not correspond to
an equilibrium state. If the pressure in the liquid is determined from the condition of conversion of the kinetic
energy of radial motion ky at the instant of bubble collapse into energy of elastic compression of the liquid, at
which time the kinetic energy of radial motion becomes practically equal to zero, then the corresponding point
f (see Fig. 1) on the shock adiabat converges with the Rayleigh— Michelson line. As a result, anomalous pres-
sure spikes cannot be realized in the structure of the time-invariant shock wave. Consequently, the shock
waves observed in the experiments of [5, 6] were strongly time-dependent. We now determine the shock
velocity vf corresponding to the maximum possible magnitude of the oscillating pressure peaks. For this velo-
city, which determines the slope of the Rayleigh— Michelson line joining the points 0 and f in Fig, 1, we obtain
the following expression on the basis of relation (5) under conditions (6):
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Here we note that the velocity of a wave packet with the anomalously high pressure observed in the experiments
of [5, 6] is satisfactorily consistent with this expression at the estimation level. The foregoing estimate clearly
gives the value for the maximum velocity of propagation of the time-dependent part of the wave with high fre-
quency oscillations initiated by the pressure pg.

The structure of a time-invariant shock wave for B>1 is shown schematically in Fig. 3. In this regime,
where the bubbles experience a very great reduction from their initial dimensions and then expand, first of all,
it is difficult in principle to calculate the wave structure from Eqgs. (37) and, second, these eguations are no
longer justified. In particular, in the stage of collapse and subsequent expansion of the bubbles it is necessary
to include the compressibility of the liquid, etec., in the equation of radial motion. However, inasmuch as these
zones are of inconsequential extent, for the calculations they can be replaced by discontinuities at which the
kinetic energy of the motion toward the center of the bubbles is converted with a certain degree of dissipation
into kinetic energy of radial motion directed away from the center. These discontinuities are indicated by dots
in Fig. 3.

As mentioned, strongly time-dependent shock waves have been observed in the experiments of [5, 6]. In
the case dominated by the inertial collapse regime, with a2 minimal compression of the bubbles to retard their
radial motion a drastic pressure increase must take place in the bubble interior, and, accordingly, the pressure
will also increase in the equivalent cell [the maximum possible value of this increase is estimated by expression
(29)], so that such time-dependert shock waves with anomalous high~-frequency pressure peaks are realized for
B> 1. The structure of such a time~dependent shock wave with a high-frequency oscillating "tail" is shown
schematically in Fig. 4.

Realizations of the regime described here with anomalous pressure peaks can be promoted by the breakup
of bubbles due to instability created by the reduction of their radii (in particular, this event causes the parameter
B to increase). With growth of the bubbles and, hence, of the phase interface heat-transfer capacity of the
liquid increases considerably, resulting in the accelerated collapse of bubbles with a finite value of ky.

A problem still outstanding is the quantitative theoretical description of the structure of a time-dependent
shock wave with an oscillating packet, in which the medium goes over to a single~phase equilibrium state after
executing several oscillations with the dissipation of kinetic energy and the multiple diminution as well as al-~
most complete vanishing of bubbles, with regard for the effects of compressibility of the liquid and bubble
breakup.



The maximum amplitude of the oscillations is estimated by expression (29) and, as noted above, is
reasonably consistent with the experimental data. The most complicated problem is to predict the lifetime of
the oscillations or of the oscillating tail. This problem can be significant, because the collapse of vapor bub-
bles is accompanied by quite a few oscillations, and the tail of the wave can be very long,

In light of the indicated considerations, the feasibility of establishing the time~invariant shock structure
shown schematically in Fig. 3 in a liguid containing vapor bubbles also poses an intricate fundamental problem.
Only with continued detailed experimental and theoretical studies will an answer be forthcoming.

Below, we analyze the results of calculations performed on the basis of the equations discussed above.
All of the thermophysical properties are taken from [8], Figure 5 shows the structure of a shockwave for
water containing vapor bubbles with the following values of the parameters governing the initial state of the
mixture, the wave intensity Pg, and its velocity v, relative to the preshock medium: @y;=0.05; py=1 bar; ax =
10 m/sec; Pg=2; vy=45.9 m/sec. Curve 1 is calculated for a bubble diameter 2a,=10"°m, and curve 2 for 2a,=
10™* m. It is evident from the graph that for bubbles with ,2ao=10'3 m the parameters (pressures of the phases
P; and P, and the diameter 2a) execute several oscillations and in the monotonic regime tend to their limiting
postshock values. The kinetic energy of radial motion at first has two or three oscillations and then tends to
zero, Thus, a time-invariant shock wave exists for the given situation. As noted above, Eq. (37) makes the heat-
transfer rate too low, because the given model ignores slip of the bubbles relative to the liquid and bubble
breakup effects. The effects of slip [with the use of (35)] and breakup can bhe estimated against the background
of the numerical solution.

The displacement of the bubbles relative to the liquid during the first maximum compression (D~0.4) is
equal to Al~0.6. Thus, the possible maximum displacement is approximately one third the first minimum
value of the diameter, i.e., the surface of the bubble cannot be restored, and the slip effect can be neglected.

Bubble breakup can be induced, first, by dynamic differentials created in the gaseous phase during relative
motion of the phases and, second, by retardation of the radial motion of the bubble boundaries in connection with
the increase of the vapor pressure inside the bubbles as they are compressed.

The conditions for bubble breakup initiated by the above-noted effects take the respective forms [8]
0.2
ﬁ_zﬂzw’e>mzn, (42)
p?gaZ *
—T = BO >BO = n2. (43)

Here g is the acceleration of the liquid at the phase interface during radial motion of the bubbles.
It is evident from expressions (42) and (43) that surface tension inhibits breakup in both cases.

With the use of expression (34) for vyy, condition (42) can be written in the form of a relation determining
the dimensionless bubble radius (D) at which breakup is possible:
4no 9
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An analysis of this relation in application tothe given example shows that the condition for breakup by dynamic
differentials is expressed by the inequality D £ 0.05.

In the given problem, however, D>~0.4 in the first maximum compression. Thus, the dynamic differentials
of the gaseous phase in the given case apparently do not elicit bubble breakup. For the given example conditicn
{42) holds in the first compression of the bubbles in the wave, indicating the possibility of bubble breakup in-
duced by retardation of the radial motion of their boundaries on the vapor side. An analysis of the experiments
of [10, 11] shows that the same effect is responsible for the instability of air bubbles in the case of waves with
P ~2-3.

The results of the calculations indicate that when a shock wave propagates in 2 mixture containing small
bubbles it is possible for "anomalously" large pressures to be created. The occurrence of such pressure
peaks in a disperse mixture containing "large" bubbles can be attributed to their breakup in the initial stage of
shock compression. The breakup process in the initial stage has the effect of making the propagation of a
shock wave in a mixture with "large" bubbles equivalent to the propagation of a wave of the same infensity, but
in a mixture containing indivisible "small" bubbles. The factors responsible for breakup can be ascertained
by means of the criteria (42) and (43).
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The tendency toward the realization of strong high-frequency pressure "spikes" in a shock wave with a
reduction of the initial bubble diameter is attributable to the reduction of the heat resistance between the phases
as a result of the growth of the specific phase interface.

We have carried out calculations for liquid nitrogen containing nitrogen bubbles with the following param-
eters governing the initial state of the mixture and the shock intensity: @4(=0.05; p,=1 bar; P, =2-3; 23, =10"3
m. For media whose initial state and shock intensity are close to these values, the amplification of shock waves
has been observed in experiments [5], even though calculations without regard for breakup predict that a time-
invariant shock wave must exist in these cases. Clearly, for these parameters a spontaneous decomposition of
bubbles into smaller bubbles takes place at the shock front, where it is induced predominantly by the relative
motion of the phases. The probability of breakup by this mechanism in the case of nitrogen bubbles is greater
than for water bubbles due to the roughly tenfold decrease in the parameter B; governing the threshold of in~-
stability. The latter result is attributable to the fact that, because of the low temperature (T;=77K, pg =5 kg/
m?), the density of nitrogen vapor is an order of magnitude greater than that of steam (T,=373K, p§ =0.6 kg/m?).

We note once again that the breakup of bubbles by a shock wave into a set of much smaller fragments is
probably attributable in large part to Kelvin—Helmholtz instability. This conjecture is also evinced, in particu-
lar, by the results of [9]. We infer from the foregoing discussion that the tendency toward anomalous pressures
is dictated by the heat resistance of the liquid and depends on the thermal diffusivity of the liquid, the bubble
sizes, and the possibility of breakup into much smaller fragments.

NOTATION

of, Py, true densities of the liguid and vapor; v, velocity; py, p;, mean pressure in the liquid phase and
pressure inthe bubbles; oy, volume concentration of bubbles; n, number of bubbles per unit volume; a, bubble radius,
wy, Wy, particle velocities of radial motion of the liquid and vapor at the phase interface; ky, kinetic energy of
bubble motion; j, interphase mass-transfer rate per unit area of the phase interface; g5y, 449, heat fluxes per
unit area of the phase interface in the liquid and in the vapor; vy, o, viscosity and coefficient of surface tension
of the liquid; I, specific heat of vaporization; ¢y, Ay, specific heat and thermal conductivity of the liquid; y, adia-
batic exponent of the vapor; Tg(py), vapor saturation temperature at pressure py; Cy, sound velocity in the liquid
phase; B, gas constant; @, V, P, D, W, 0, Ky, dimensionless values of the vapor density, velocity, pressure,
radius, radial particle velocities of the phases, temperature, and kinetic energy; a.=Vplo),, characteristic
velocity; 0% =20/pga,, v* =8vy/ay ay, 1=/ (0}gc1a:a0), 7 =pficy /pdB, L=1pdy/p,, characteristic dimensionless
parameters. Indices: 0, e, preshock and postshock equilibrium states.
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