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S H O C K  W A V E S  I N  A L I Q U I D  C O N T A I N I N G  V A P O R  B U B B L E S  

R.  I .  N i g m a t u l i n ,  V.  Sh .  S h a g a p o v ,  
N. K. V a k h i t o v a ,  a n d  Z.  A.  S h i k h m u r z a e v a  

UDC 532.529.5.533.6.011.72 

The s t ruc tu re  of shock waves  in a liquid containing v a p o r  bubbles is invest igated,  and an ex-  
planat ion is given for  the m e c h a n i s m  of the anomalously  high p r e s s u r e s  in shock waves p ropa -  
gating in cer ta in  v a p o r -  liquid media.  

C o n d e n s a t i o n  S h o c k  

When a weak shock wave p ropaga tes  in a liquid containing v a p o r  bubbles,  the t e m p e r a t u r e  of the liquid 
does not change apprec iably .  Consequently,  with the at tendant i nc rea se  in p r e s s u r e  and, hence, in the sa tu ra t ion  
t e m p e r a t u r e  of the s y s t e m  the pos t shock  v a p o r  becomes  supercooled,  resu l t ing  in i ts  condensation. Situations 
a r e  t he re fo re  poss ib le  in which a shockwave  reduces  a two-phase  mixture  to a s ing le -phase  mixture.  

Accordingly,  the formula t ion  of p r o b l e m s  for  bubbly liquids with al lowance for  the poss ib i l i ty  of the an-  
nihilation of bubbles must  incorpora te  sheets  o r  boundar ies  F (i2) s epara t ing  regions  of s ingle-  and two-phase  
flow. On these  sheets  F (12), which a re  aptly called condensation shocks,  i t  is n e c e s s a r y  to se t  up boundary con- 
ditions analogous to those on sheets  of discontinuity.  

We cons ider  the s ta ted conditions in a coordinate s y s t e m  wherein  the s h e e t  F (12) is at rest .  The two-phase  
s ta te  (with bubbles) of the medium ahead of this shock is  designated by the index 0, and the s ta te  of the medium 
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Fig. 1. Shock d i a g r a m f o r  
a bubbly v a p o r - l i q u i d  
mixture. 

Fig. 2. Diagrams of the p re s su re  
intensification ratios for  plane 
shocks reflected f rom a rigid wall. 
1, 1', 1,,, 1")  s t e a m - w a t e r  mix- 
tare ;  2, 2', 2", 2 m) a i r - w a t e r m i x -  
ture;  4) acoust ic  medium. 

af ter  the shock (in the fo rm of a s ingle-phase liquid) by the index e. Then the laws of conservation of mass,  
momentum, and energy, neglecting the mass,  momentum, and energy of the bubbles in comparison with the 
same pa rame te r s  for  the liquid, acquire  the form 

CqoO~oVo = p?~v~, 

0 2 
~oO?o v~ + po = ple ve + p~, (1) 

~  ] ] aioPJoVo + klo + Uto + Po% = P~ + u1~ + p~%. 

Here kl0 is the kinetic energy  of smal l - sca le  radial  motion per  unit mass  of liquid before the shock F(12); al0 , 
volume content of liquid before the shock; ul0 , v0, Po, specific internal  energy  of the liquid, the velocity, and the 
mean p r e s s u r e  of the medium before the shock; and Ule , Ve, Pc, same pa ramete r s  of the liquid af ter  the shock; 
also, 

PO = 0r "@ ~'Z0 P2O - -  , p~ = p ~ ,  a2o = 1 - - % 0 .  (2) 
a o 

Knowing that the volume concentrat ion of the bubbles is smal l  (~20 << 1), f rom now on we let P0 =Pl0, and for  the 
p r e s s u r e  of the host liquid we assume a l inear  equation of state: 

;~  - po = c~ (~,? - d o ) .  (~) 

F r o m  the mass  balance equation at the shock [first equation (1)] in conjunction with the equation of state 
(3) we deduce 

p~ = p~ (1 + a~ (P~ - -  1)), 

1 + (~zj~o)(P+ - -  t )  (4)  
v o - -  v+ = vdZoo l + a~ (P~ - -  1) 

( Po p ~ =  P~)  
~ c  - -  0 2 ~ 

P l oC1 Pc , 

Then f rom the equation of momentum conservat ion at the shock [second equation (1)] we obtain an express ion 
relating the shuck s t rength Pe to its veloci ty D o = - v  0 relat ive to the preshock (upstream) medium: 

D2o=v2 ~ . . . .  Pc o (P+--I)  l q - a ~ ( P ~ . l )  (5) 
Cr 1 -t- (cze/~Z2o)(Po - -  1) 
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It is evident f r o m  this re la t ion  that  the influence of the compress ib i l i t y  of the host  liquid is embodied in 
the last  cofactor .  Thus,  the compress ib i l i t y  of the liquid is insignificant,  i .e. ,  the ent i re  compress ion  of the 
mixture  takes  place  through the bubbles if  and only if  

6 e = - -  % (P~-- I ) - -  P~--o Po2 <(1. (6) 
a2o ~2oPl oCi 

This condition holds for  ~20 ~10- i ,  P~o "~ kg/m3, and C i ~103 m / s e e  if  Pe - Po ~ 102 bar .  

F r o m  the second equation (4) and f r o m  (5) we read i ly  deduce an expres s ion  re la t ing the veloci ty  va r ia t ion  
to the p r e s s u r e  at the condensation shock: 

~xv~ = Vo - r.,~ = O~OpOo (p~ _ 1) 1 + T '~ + o ( , ~ )  . (7) 
C~I0P 10 

F r o m  the ene rgy  equation at  the shock [third equation (1)] we obtain 

(8) 

In cases  where  the influence of the compress ib i l i t y  of the host  liquid is slight, i .e. ,  where the inequality (6) or  
IP~ - P~01 << P~0 is valid, Eq. (8) can be rewr i t t en  

u,~--u~o=k~o czo_,~ P~o r' P ~ P ~  5c. (9) 
czt~ Plo P~o 

F r o m  the f i r s t  and second equation (1) we readi ly  obtain the re la t ion  

P0 + (p0v0)aOo. = Pc @ (p0v0)20e, (10) 

o 1 1 

P0 P~, 
Here P0 is, with regard for the neglected mass of the bubbles, the mean density of the preshock mixture, and 
d is the specific volume of the mixture. 

A schematic shock diagram of a bubbly vapor-liquid mixture is shown in Fig. 1. Curve 1 is the shock 
adiabat of the mixture. The curve p(~) has a very mild slope in the region of the original equilibrium (ki0 =0) 
two-phase state. This result is attributable to the fact that the vapor pressure in slow compression of a bubble 
scarcely increases, owing to condensation of the "excess" vapor mass. The slope of the curves at point 0 is 
determined by the equilibrium sound velocity C(e) sometimes called the Landau sound velocity [1], which is very 
small in such a mixture; in particular, it is much smaller than the same velocity in a mixture containing gas 
bubbles. When ~ ~ 1/P~ i.e., when practically all the bubbles vanish, the compressibility of the medium is 
equal to that of the liquid, and so the diagram ostensibly acquires a sharp bend. It will be shown later that such 
a strong nonlinearity of the shock diagram induces a substantial increase in the pressure in the reflection of a 
wave or shock pulse of sufficient duration from a rigid wall. Curve 2 in Fig. I is the shock adiabat for a liquid 
containing gas bubbles of constant mass. The line 0e connecting the points corresponding to the preshock (0) 
and postshock (e) states of the mixture is called the Rayleigh-Michelson line. The slope of this line is deter- 
mined by the factor (PoVo)2, i.e., bythe shock velocity. 

R e f l e c t i o n  of the C o n d e n s a t i o n  Shock f rom a R ig id  Wall 

Hereinafter we use the indices 0, e, and f to designate, respectively, the parameters ahead of the incident 
shock, after the incident and before the reflected shock, and after the reflected shocks. If the intensity of the 
incident shock is large enough to elicit complete condensation of the vapor, D O will be given by expression (5). 
Se~ing v 0 =0, we can determine the particle velocity of the liquid after the incident shock from (7). Also, 

pOf ~ pO0, Df ~ C,, 

because  the re f lec ted  shock t r ave l s  through a l ow-compres s ib i l i t y  s ing le -phase  liquid, for  which the curve 
p ( p - i )  can be considered l inea r  up to p r e s s u r e s  ~103-104 bar .  

In light of the foregoing we deduce an expres s ion  for  the p r e s s u r e  a f t e r  the re f lec ted  shock: 

125 



P = +A0 A0= p;0c  (11) 
Pe Pe Po ' alo P0 ' 

which indicates  the degree  of intensif icat ion of the shock wave in the v a p o r - l i q u i d  mixture  upon re l fec t ion 
f r o m  a rigid wall  in the ease where  the incident shock e l ic i t s  complete  condensation of the vapo r  and the com-  
p re s s ib i l i t y  of the liquid is felt  only in the re f lec ted  shock. F o r  compar i son  we give the cor responding  re la t ion  
for  a g a s - l i q u i d  s y s t e m  compr i s ing  a mixture  of an i ncompres s ib l e  liquid with gas bubbles of constant  mass :  

P/P~ = pelpo (12) 

and the re la t ion  for  a l ow-compress ib i l i t y  l inea r  acous t ic  medium: 

P_z_~ = 2 - - 2 - I  (13)  

P~ PdPo 

A d i a g r a m  of the p r e s s u r e  ra t io  Pf/P0 is given in Fig. 2 for  plane shock waves  ref lec ted  f r o m  a r ig idwal l  
in a s t e a m - w a t e r  mixture  (curves 1, 1', 1", 1" ,  p 0 = l  bar ,  T o =373~ a n a i r - - w a t e r m i x t u r e  (curves2 ,  2 ' ,  2", 2"', 
p0= l  bar ,  T=273~ and an acoust ic  medium (curve 4). The numbers  0.01, 0.05, and 0.2 indicate the values  of 
the init ial  bubble concentration.  The deviation of c u r v e  I f r o m  the dashed curve  fo r  s m a l l  values  of Pe/P0 
(view A) is assoc ia ted  with the incomplete  condensation of the vapo r  a f t e r  the shock. The deviation of cu rves  
2, 2', 2", and 2'" f r o m  the line 3 is  a ssoc ia ted  with the advent of compress ib i l i t y  of the liquid in suff icient ly 
s t rong  shocks.  

It  is apparent  f r o m  express ion  (11) and f r o m  Fig. 2 that a shock wave in a v a p o r - l i q u i d  mixture  can be 
ve ry  grea t ly  ampli f ied in reflect ion.  F o r  example ,  in the case  of a s t e a m - w a t e r  mix ture  with ini t ial  p a r a m e t e r s  
P0 =1 bar ,  P~0 ~ 10a kg/ma, Cl~1500 m / s e e ,  and co20 =0.1 (A0 F =50), a f t e r  the re f lec t ion  of waves  with p r e s s u r e s  
Pe =2 b a r  and Pe =5 b a r  the p r e s s u r e s  at the wall  become equal  to pf  ~52 and 105 bar ,  respec t ive ly .  This  
ampli f icat ion i n c r e a s e s  with the volume v a p o r  concentration.  

S t r u c t u r e  o f  T i m e - I n v a r i a n t  S h o c k  W a v e s  

We cons ider  the one-d imens iona l  t i m e - i n v a r i a n t  motion of a liquid containing vapoz bubbles under  the 
usual  conditions for  two-phase  monodisperse  media [2, 3]. Following Nigmatulin [2], in the one-ve loc i ty  ap-  
p rox imat ion  we wri te  the equations of continuity and momen tum for  the mix tu r e ,  the equations desc r ib ing  the 
laws of mass  va r ia t ion  for  a so l i t a ry  bubble and a set  of bubbles, and the equations for  the va r i a t ion  of the bub-  
ble radius  and radia l  motion of the liquid: 

d 
- -  ( o r )  = 0 ,  pv 
dx 

dv dpi , v d [ 4~ a o 

d 
- -  n v  = O, ( 1 4 )  
dx 

2a 
da " dwt 3 o P 2 - -  P i - -  - ~  

v = w l +  10 , av + ~ - ~ + 4 ~ L ~  l -  
dx Pl dx a pc 

(p = p~ (l - -  %) + 9~ %, a ~  . 
" 3 

Here  P, Pi ,  P i ,  a i ,  w i a r e  the mean densi ty  of the mixture  and the t rue  density,  p r e s s u r e ,  vo lume concentrat ion,  
and par t i c le  veloci ty  of the i - th  phase  at the phase  in ter face .  In the las t  equation (equation of rad ia l  motion of 
the liquid) the d i f ferent ia l  p r e s s u r e  c rea ted  a t  the bubble wall  by phase t rans i t ions  is neglected.  

F r o m  nowonwe use  the indices 1 and 2 to r e f e r  the p a r a m e t e r s  to the liquid and v a p o r  phases ,  r e s p e e -  
t ively. 

An analys is  of the behav io r  of a vapo r  bubble with an abrupt  change of the p r e s s u r e  in the liquid shows 
[2, 4] that for  t e m p e r a t u r e s  and p r e s s u r e s  of the medium not too close to the c r i t i ca l  va lues  the t e m p e r a t u r e  
nonuniformity of the v a p o r  in the bubble i n t e r io r  is inconsequential .  Then the th ickness  of the t e m p e r a t u r e  
boundary l aye r  in the liquid is  usual Iy  much s m a l l e r  than the mean dis tance between the bubbles.  Consequently,  
the heat  and mass  t r a n s f e r  around the vapo r  bubbles can be desc r ibed  by the heat-conduct ion equation for  the 
liquid in the spher i ca l ly  s y m m e t r i c a l  approximat ion;  i f  we neglect  the compres s ib i l i t y  of the liquid, this  equa-  
t ion has  the f o r m  
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p c, ( aT, aT, 1 a aT, 
V - ~ X  + wr Or ) r 2 Or \ Or ] ' (15) 

~ ' r =  ~, (0 < r < oo). 

At  the  i n t e r f a c e  ( r =  a) we s p e c i f y  the  b o u n d a r y  cond i t ions  

Or (16) 

U n d e r  the  cond i t ion  of h o m o g e n e i t y  of the  p r e s s u r e  i n s i d e  the  bubble  ( h o m o b a r i c i t y  condi t ion)  [41 we can  
w r i t e  the  equa t ion  fo r  the  p r e s s u r e  in  the  v a p o r  p h a s e  

dp~ 3 (7 - -  1) 37p ~ (17) 
V -- q~2 - -  - -  ~2. 

dx a a 

We f u r t h e r  add  the  equa t ions  of s t a t e  of  the  p h a s e s  

P, = Po + C, ( 0 ~ -  Pi~ P2 = P~ (18) 

The  s y s t e m  of  equa t ions  (14) a d m i t s  the  f i r s t  i n t e g r a l s  

pv = pore = me, nv = nero, (19) 

p, + racy = Po § move, 

which e x p r e s s  the  c o n s e r v a t i o n  of  the  n u m b e r  of bubb le s  and the  m a s s  and m o m e n t u m  of the  m i x t u r e .  The 
a d d i t i o n a l  s u b s c r i p t  0 r e f e r s  to the  p a r a m e t e r s  of the  i n i t i a l  e q u i l i b r i u m  s t a t e .  

F r o m  the m a s s  and m o m e n t u m  i n t e g r a l s  (19) we r e a d i l y  obta in  a o n e - t o - o n e  r e l a t i o n  be tween  the p r e s s u r e  
and the d e n s i t y  fo r  a t i m e - i n v a r i a n t  s h o c k  wave :  

P~ + (OoVo) ~ = Po + (O0v0)2~0 (~ = 1/9). (20) 

It i s  e v i d e n t  f r o m  th i s  e x p r e s s i o n  tha t  in a t i m e - i n v a r i a n t  s h o c k  wave the t r a n s i t i o n  f r o m  s ta t e  0 to  s t a t e  e t a k e s  
p l a c e  a long  the R a y l e i g h - M i c h e l s o n  l ine .  

F o r  the ensu ing  d i s c u s s i o n  we w r i t e  the  equa t ion  fo r  the  v a r i a t i o n  of the k ine t i c  e n e r g y  of r a d i a l  mot ion  
of the l iquid  p e r  s ing le  bubble ,  d e r i v i n g  i t  f r o m  the equa t ion  of r a d i a l  mot ion :  

( 0 
a 2 d ~  =2r~ P 2 - - p t - -  - - 8 a  01% w, k,=2rtp~aa~v z ( 9 = ~ t ) .  (21) 

a 

A n a l y s i s  o f  t h e  S y s t e m  U n d e r  t h e  C o n d i t i o n  o f  C o n s t a n t  

Pressure in the Bubble Interior 

We a n a l y z e  the  s y s t e m  of  d i f f e r e n t i a l  equa t ions  g iven  above  fo r  the  c a s e  P2 =P0. Th i s  c a s e  ob ta ins  when 
the  t e m p e r a t u r e  of the bubble  w a l l  r e m a i n s  cons t an t  b e c a u s e  of the  l a r g e  t h e r m a l  c onduc t i v i t y  of the l iquid  o r  
b e c a u s e  of  con t inua l  r e s t o r a t i o n  of the  bubble  wa l l  by r e l a t i v e  motion.  A l s o ,  to  e c o n o m i z e  on the c a l c u l a t i o n s  
we n e g l e c t  c a p i l l a r y  e f f e c t s ,  v i s c o s i t y  e f f e c t s ,  the m a s s  content  of  the v a p o r ,  and the  d e n s i t y  of the v a p o r  in 
c o m p a r i s o n  wi th  the  d e n s i t y  of  the  l iquid .  Then  f r o m  Eqs .  (16) and (14) we ob ta in  

whence  we i n f e r  t ha t  

v = v o [1 - -  a~o (1 - -  Da)], p, = Pc + P~ (1 - -  a2o ) Co (v o - -  v), 

da dw 3 P2- -P ,  ( = - ~ o )  o - - = w ,  av + - - w 2 - - '  P,2 Po, D =  

(22) 

a da + 2 ~z = ao0( 1 .  --~z20 ) v~ ( 0 3 _  1). (23) 

127 



The solut ion  of the l a t t e r  equa t ion  sub jec t  to the condi t ion w (a 0) =0 has  the f o r m  

w z a:o (1 - -  m~o) v~ (D_3/2 __ D3/~) z P~- -  Pc (D_3/z __ D3/~)2. 
= 3 - 3o~ 

(24) 

Then f r o m t h e  f i r s t  and th i rd  equat ions  (22) we have  

D 

i l - - a ~ o ( 1 - - D  ~) x ]1/~ �9 D _ 3 / 2 D 3 / 2  d D =  [a.2o (1 - -  O~2o)/3 . 
(l o 

0 

(25) 

Here  the cons tan t  of i n t eg ra t i on  is  d e t e r m i n e d  f r o m  the condi t ion D = 0  at  x = 0 .  The f i r s t  two r e l a t i o n s  f r o m  (22) 
and the r e su l t i ng  so lu t ions  (24), (25) d e t e r m i n e  the " s t r u c t u r e "  of  the t i m e - i n v a r i a n t  shock  wave in p a r a m e t r i c  
f o r m  (with D as the p a r a m e t e r ) .  The  k ine t ic  e n e r g y  of  r ad i a l  mot ion  of the liquid in the i nves t i ga t ed  p r o c e s s  i s  
e x p r e s s e d  by the equa t ion  

2:~a2o (1 - -  O:8o ) V2 o a3o (D_3/2 _ D3/2)ZD3 9~. (26) 
k~=  3 

F r o m  this  r e l a t i on  we can find the quant i ty  k i at  the ins tan t  of  bubble co l l apse  (D -~ 0): 

ao P1 kif = 2na2o( 1 __cC.~o) V~ 3 o 4~ 3 P~- -Po  
3 = ~ -  ao-~--- ,  

which has  a f inite value.  If a l l  of th is  k inet ic  e n e r g y  is  conve r t ed  into hea t  a f t e r  bubble co l l apse ,  the r e su l t i ng  
i n c r e a s e  in the t e m p e r a t u r e  of the liquid m a s s  m a s s o c i a t e d  with a s o l i t a r y  bubble,  e s t i m a t e d  a c c o r d i n g  to the 
equat ion  

A T =  ki '  ~ o  P ~ - - P o (  4 3 o 1--c%~) 
mc~ 1 - -  aeo 29[c~ m = ~ nao 91 azo , (27) 

is  u sua l ly  negl igible .  The c h a r a c t e r i s t i c  p r e s s u r e  i n c r e a s e  P 'e  =Pe +Ap in the unit  ce l l  ( a s soc i a t ed  with the 
s o l i t a r y  bubble) a f t e r  bubble co l l apse  can  be e s t i m a t e d  s i m i l a r l y ,  a s s u m i n g  tha t  the e n t i r e  k inet ic  e n e r g y  of 
r ad i a l  mot ion  of the liquid m a s s  m is  c o n v e r t e d  at the ins tan t  of co l l apse  into e n e r g y  of e l a s t i c  c o m p r e s s i o n  
of the bubble  : 

P] 

S P 0 (p])2 __ (pe)Z (2 8) k~] = m ~ @1 ~ m 
(p l )  ~ 2 (07o)~C~ 

Pe 

Here ,  in comput ing  the i n t e g r a t  d e s c r i b i n g  the w o r k  of the i n t e r n a l  c o m p r e s s i o n  f o r c e s ,  we have  t a k e n  into  
account  the low c o m p r e s s i b i l i t y  of the liquid (p0_ P~0 <<P~0) and i ts  a c o u s t i c a l  equa t ion  of s ta te .  Subs t i tu t ing  
the va lues  of m and klf  into (28) and so lv ing  the r e s u l t i n g  equa t ion  fo r  pf, we obtain  

o 2 (29) Pe - -  Po PtC1 cz2o 
P s = P e / / /  1 + Pe pe 1 - - a ~  o 

For example, if pc =2P0=2 bar,~20=0.05, and CI=1500 m/sec, then pf ~ 30bar, eorrespondlngto the magnitude 
of the oscillating pressure peaks in shock waves in experiments [5, 6]. 

We now estimate the influence of viscosity on the structure of a time-invariant shock wave on the basis of 
the solution obtained above. From Eq. (21), using the first and second relations (22) and relations (5), and 
neg lec t ing  the c o m p r e s s i b i l i t y  of the liquid and c a p i l l a r y  e f f ec t s ,  we obta in  an  e x p r e s s i o n  fo r  the k inet ic  e n e r g y  
of r a d i a l  mot ion  a t  the i n s t an t  of bubble co l l apse :  

o 

f ktj = ~4~ a3o .Pe2P~ k~, k ~ =  8~p~ . wada. (30) 

an 

In (30) we can establish the following upper bound for the quantity k v expressing the viscosity-dispersed energy, 
making use of expression (24): 

_ [ 7  ] I3, 
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Fig.  3. S t ruc tu re  of a t i m e - i n v a r i a n t  shock  wave in the ine r t i a l  r eg ime  of bubble col lapse .  

Fig.  4. S t ruc tu r e  of a t i m e - d e p e n d e n t  shock  wave in a bubble v a p o r - l i q u i d  mix tu re  with osc i l l a t -  
ing p r e s s u r e  peaks  induced by bubble col lapse .  

Fig.  5. Calcula ted  cu rves  fo r  the s t r u c t u r e  of a t i m e - i n v a r i a n t  shock  wave in a bubbly 
s t e a m - w a t e r  mix ture .  

Thus,  f o r  the kinet ic  e n e r g y  of  r ad i a l  mot ion  at  the ins tan t  of  bubble co l lapse  we have the l ower  bound 

k ~ f > ~ - - a ~ - -  1 ~ . (32) 
2 2 V'3- ao Pe - -  po 

F o r  bubbles  with radi i  a 0 ~10-8 -10  -4 m in w a t e r  the inf luence of v i s c o s i t y  can be neglected ,  and only in a v e r y  
f inely  d i s p e r s e  mix tu re  with a 0 ~10 -e m can the v i s c o s i t y  have any app rec i ab l e  inf luence.  

F o r  a low volume concen t r a t i on  of  bubbles  (~2 << 1) the mot ion  of the l a t t e r  re la t ive  to  the liquid (t~vo- 
v e l o c i t y  effect)  has  v e r y  little inf luence on the d i s t r ibu t ion  of  the p a r a m e t e r s  of the l iqu id  (P~Pi, v ~ v i ) ,  and so 
the g iven  mot ion  can be d e t e r m i n e d  f r o m  the equat ion of  mot ion  of the bubbles  a c c o r d i n g  to  the d i s t r ibu t ion  of 
v and Pi d e t e r m i n e d  f r o m  the o n e - v e l o c i t y  approx imat ion .  If  we neglec t  the v i s c o s i t y  of  the liquid and take into 
c o n s i d e r a t i o n  that  the r e l a t ive  ve loc i ty  of the phases  is smal l ,  I v 2 - v  ~ I N tv0-vtl<<v0, and the ine r t i a  of the bub-  
ble is  d e t e r m i n e d  by i ts  addi t ional  mass ,  we obtain the equa t ion  of mot ion  of the bubbles  in the f o r m  [2, 3] 

2~ o d 4n dp 
3 3 dx 

vl~ = v i - -  v~, p ~ Pl)" (33) 

Now, making  use  of  the fact  tha t  the ve loc i t i e s  of  the phases  coincide  ahead of the shock  wave, i .e . ,  vl2 =0 at 
a =ao, and invoking Eq. (24), we obtain 

v,~ = a~o (l - -  a~o) Vo (D -3 - -  D3). (34) 

F o r  the mot ion  of  the bubble r e l a t ive  to the liquid, us ing  (24), we wri te  

x 

A I =  t' V12dx :  r~' ' f l - - D W 2  D5/2--1  ) 
2 v~ j v%w da=2aok~3a2~162 ~-~, / -~  - - ~  5 " 

- - ~  a o 

(35) 

It  is evident  f r o m  this  equat ion  that  the r e l a t ive  d i s p l a c e m e n t  i n c r e a s e s  with c o m p r e s s i o n  of  the bubbIe. At  a 
c e r t a i n  value of the rad ius  a the d i s p l a c e m e n t  of the bubble r e l a t ive  to the liquid b e c o m e s  c o m m e n s u r a t e  with 
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the radius ,  so that the liquid at the sur face  of the bubble is replenished and heat t r a n s f e r  is intensified. Inas -  
much as the hea t -  and m a s s - t r a n s f e r  r a t e s  in a liquid containing vapo r  bubbles a re  l imited by the heat  r e s i s -  
tance of the liquid, ignoring the flow of liquid around the bubbles in Eqs. (15)-(17) will make the h e a t - t r a n s f e r  
ra te  too low. 

C a l c u l a t i o n  of t h e  S t r u c t u r e  o f  t h e  S h o c k  W a v e  w i t h  R a d i a l  

H e a t  a n d  M a s s  T r a n s f e r  

El iminat ing qa2 by means  of re la t ions  (16) and making use of the condition of conserva t ion  of the m a s s  of 
the bubbles, i .e. ,  the third equation (14), we wri te  exp res s ion  (15) in the f o r m  

v --~dP~" -1- [_[(7:1)/1 --s "~'PZ]oo v do~ __ 3 ( , - -1 )a  (;t'i--~j~OT' ~ 3 (7__ 1)p~ (1 - -  s) a (s = 02 01"01 O. (36) 

It is impor tan t  to note that  this equation cor responds  to the case in which the t h e r m a l  diffusivity of the vapo r  is 
large enough to pe rmi t  the t e m p e r a t u r e  inside the bubble to follow the wall  t empe ra tu r e .  We can a lso  analyze 
the opposite e x t r e m e  of a sma l l  t h e r m a l  diffusivity of the vapor ,  such that  a u n i f o r m - t e m p e r a t u r e  r eg ime  is 
real ized.  In this case the equation for  P2 follows f r o m  (17) for  q~2 =0. Calculat ions have shown, however,  that 
both e x t r e m e  cases  in the de te rmina t ion  of Pl yield p rac t i ca l ly  the same resul ts .  

Fo r  numer ica l  calculat ions we introduce the d imens ion less  va r i ab l e s  

v w p pc Tt 
U = - - ,  W--  - - ,  P =  , @ 2 = - - ~ ,  O i = - - ,  

a,  a,  Po 920 To 

x =  x , R = ~  K -  k~ =(po'~/~ 
ao ao ' 2aaapo,  a, ~7~1 ) " 

After  suitable t r ans fo rma t ions  the s y s t e m  (14)-(18), (36) takes  the f o r m  

dD dW 3 , (7* v* 
U = W, DU -- Wz + P2 - -  P~ . . . .  W, 

dX dX  2 D D 

U dOi 1 (9 ~ , R z  OOj - - W  
dX R ~ OR OR O R '  

ADU dP2 { 0 0 ~  Lff)~W (37) 
3 dX = ~1~* \ O R )  " " D 1 - - s  ' 

U = U o [ I  %o (1 - -  D3)], P t =  l @ %0 (1 - -  %o) U~ (1- -  D3), 

pz=(I)zOs(p~), KD=D3WZ,  A _ 7  - I + 1  [ (l--s)0~L 7 -17 ] (1_( i )20 : )  ' 

0~ dos 0~ ( 2(7 8v 

dP.a ffgzL \ poao a,ao 

~,  _ ~1 ~Ct 10% 
o , ~ 1 = ~ ,  L = - - , / .  

plc~aoa, p_0 2 P0 
The penul t imate  m e m b e r  of this se t  of equations is the C l a u s i u s - C l a p e y r o n  equation in d imens ion less  form. 
F o r  the numer i ca l  solution of Eqs. (37) i t  is n e c e s s a r y  to analyze the asympto t i c  behavior  of the solution of this 
s y s t e m  nea r  the init ial  p r e shock  equi l ibr ium state.  Accordingly,  the s y s t e m  is l inear ized  with r e spec t  to the 
values  of the p a r a m e t e r s  at the point 0, and a solution is sought in the f o r m  of an exponential  function decaying 
as X ~  ~ oo1 

U = U0 + Au exp (KX), W = A~v exp (KX), P~ = 1 + Ap, exp (KX), (38) 

(O~. = 1 + Ar 2 exp (KX), D = 1 @ AD exp (KX), Oi = 1 + Aol exp (KX). 

The condition for  the exis tence  of a solution in this f o r m  yields an equation for  the de te rmina t ion  of K. 

It can be proved  that the cor responding  c h a r a c t e r i s t i c  equation for  K has one and only one pos i t ive  root  
for  Pe < 1. In the case Pe > 1 such a root  does not exist .  The s y s t e m  (37) the re fo re  has a unique solution 
descr ib ing  the s t ruc tu re  of the c o m p r e s s i o n  shock. 
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The integral  curves of the sys tem of equations (37) admit  t ransla t ion along the X axis. We therefore  fix 
a cer ta in  value of D at X=0;  D must be made close enough to unity for the l inear  solution to be valid in the 
region X <- 0. The values of the other pa rame te r s  at X =0 are  determined f rom the l inear a lgebra ic  equations 
obtained by substituting a solution of the form (38) into the l inearized system. 

These quantities determine the initial conditions for  the numerica l  solution of the nonlinear sys tem of 
equations (37) in the region X > 0. To facilitate the numerica l  calculations we "freeze"  the bubble radius by 
t rans forming  to the new variable ~ = R I D  and reducing the heat-conduct ion equation to the form 

[ (  ) ~* ] 80~ 7.* 8~0i (39) dO1 ~ 1 . W + + D ~ 
U ~ - -  -D ~ZD ~D z O~ - - -  0~ ~ - ~ -  

The problem has been solved by a f ini te-difference procedure ,  where the ex te r io r  of the individual bubble is 
part i t ioned into spher ica l  layers .  The heat-conduct ion equation (39) goes over  to a sys tem of n ordinary  dif-  
ferent ial  equations. Fo r  the la t ter  we ar r ive  at the Cauchy problem, which has been solved on a computer  by 
the Runge-Kut t a  method. The number  of layers  was varied,  being chosen in such a way that its increment  
would have sca rce ly  any influence on the results .  

The preshock equil ibrium state is associated with the point 0, which is a s ingulari ty of the sys tem of dif-  
ferential  equations. To avoid the s ingular i ty  it is neces sa ry  to analyze the asymptot ic  behavior  as X ~ ' -  

We can analyze the asymptot ic  behavior  around the end state. By contras t  with a liquid containing gas 
bubbles, where close to the final equi l ibr ium state the sys t em of differential  equations admits a l inear  asymp-  
totic representat ion,  in the given case it is impossible to obtain the behavior  of the solution involving bubble 
collapse in a finite analytical  form. Numerical  calculations show that for fair ly weak shocks (for example, in 
the case of water  with P0 ~1 bar, a 0 ~10 -3 m, and Pc/P0 ~2) the last stage of collapse takes place in the pure 
the rmal  regime,  where the radial  inert ia  of the liquid has vir tual ly no effect  and it can be assumed that Pt ~p2. 
In this case, f rom the third equation in conjunction with the fourth and fifth relat ions (37) we obtain 

LP~ A (Pc - -  1) D 3 W = ~1~* k--0~- ]D ' (40) 
o~ (P~)O - -  s) 

P~ ~ P, = 1 + (P~ --1) (1 - -  D3). 

This equation must be solved s imultaneously with the heat-conduct ion equation. If the compress ion  p rocess  is 
sufficiently slow for the t empera tu re  distr ibution around the bubble to become res t ruc tured ,  acquiring the same 
profile as for s teady-s ta te  heat t r ans f e r  around a sphere:  

0 i =  (0~(P~)--l) + 1 (Nu=2),  
R 

then f rom Eq. (40), neglecting D 3 t e rms  in compar ison withthe end t e rms ,  we obtain 

DZ = 2~/~* (Be-- 1) X (41) 
L2P~U, 

F r o m  the above stated assumption underlying the validity of the given solution we deduce an es t imate  for  the 
shock intensity: 

l p0 
P~ ~ Po <~ A p t  - -  - -  - -  9~ 

clTo 9~ 

For  example, in the case of a s t e a m - w a t e r  mixture with p0 = 1 bar  we have APT = 0.025 bar,  i .e. , the solution (41) 
is valid for  v e r y  weak shock waves. Fo r  liquid nitrogen containing ni trogen vapor  with P0 =1 ba r  and T o =77.3~ 
we have p = 0.1 bar.  

R e s u l t s  o f  t h e  C a l c u l a t i o n s  a n d  C o n c l u s i o n s  

On the basis of the sys t em of differential  equations (37) we have car r ied  out numer ica l  calculations by the 
procedure  descr ibed above. However, before present ing and discuss ing the resul ts  we consider  the s ingular  
aspects  of the behavior  of the vapor  bubbles with an increase  in the p ressure .  The collapse of a vapor  bubble 
is determined by the radial  iner t ia  and the rmal  conductivity of the liquid. It can have the nature of e i ther  ac -  
celerated collapse for  P2 < Pl [in par t icular ,  s imi l a r  to (26), when P2 =P0] o r  compara t ive ly  slow (monotonic or  
oscillating) gradual  vanishing of the bubble for P2 ~ Pl [in par t icular ,  s imi l a r  to (41)]. To assess  the nature of 
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the collapse we can use the p a r a m e t e r  B proposed in [7] (see also [2]), which is equal to the rat io of the charac -  
te r i s t ic  collapse time t'=afp~/~,p if it were limited only by the inert ia  of the liquid to the collapse time t T = 
a2/(VlT =Ja  2) (VlT =kl /p  ~ c l) if it were limited only by the thermal  conductivity of the liquid (]3 =t ' / tT) .  For  
large values of B ~ 10 the p rocess  is limited by the inert ia  of the liquid and is close to the collapse acce lera t ion  
regime (26) with a value of the kinetic energy of radial  motion k~ commensurate  with kff. Fo r  smal l  values of 
B if0.05 the p rocess  is limited by the the rma l  conductivity of the liquid and has the nature of comparat ively  
slow collapse if k I << klf. 

When B<<I, the process does not manifest the compressibility of the host liquid, in which case kl~0 and 

Pl ~P2, and the transition from state 0 to state e takes place along the Rayleigh-Michelson line. In this case a 
time-invariant shock wave exists, its structure described by the solution of the system (37). 

For B >>i the inertial collapse regime in the state corresponding to the point e' (or close to it) prevails, 
and the kinetic energy of radial motion is finite. Consequently, the point e' in this case does not correspond to 

i 

an equilibrium state. If the pressure in the liquid is determined from the condition of conversion of the kinetic 
energy of radial motion k I at the instant of bubble collapse into energy of elastic compression of the liquid, at 
which time the kinetic energy of radial motion becomes practically equal to zero, then the corresponding point 
f (see Fig. I) on the shock adiabat converges with the Rayleigh- Michelson line. As a result, anomalous pres- 
sure spikes cannot be realized in the structure of the time-invariant shock wave. Consequently, the shock 
waves observed in the experiments of [5, 6] were strongly time-dependent. We now determine the shock 
velocity vf corresponding to the maximum possible magnitude of the oscillating pressure peaks. For this velo- 
city, which determines the slope of the Rayleigh-Michelson line joining the points 0 and f in Fig. I, we obtain 
the following expression on the basis of relation (5) under conditions (6): 

{ 0 ~,2 /~ ]1/2}1/2 [ PJ--Po ]I/2 [(pe__po)plO~l~,~o,~,,o I t/-~oCi . 
[ 01052o05103 0 ~) 1 005200510 

Here we note that the velocity of a wave packet with the anomalously high p res su re  observed in the experiments  
of [5, 6] is sa t i s fac tor i ly  consistent with this express ion  at the est imation level. The foregoing est imate  clear ly 
gives the value for  the maximum velocity of propagation of the t ime-dependent par t  of the wave with high f r e -  
quency oscillations initiated by the p re s su re  Pe" 

The s t ructure  of a t ime- invar ian t  shock wave for B>>I is shown schematical ly  in Fig. 3. In this regime,  
where the bubbles experience a very  great  reduction f rom their  initial dimensions and then expand, f irst  of all, 
it is difficult in principle to calculate the wave s t ruc ture  f rom Eqs. (37) and, second, these equations are no 
longer justified. In part icular ,  in the stage of collapse and subsequent expansion of the bubbles it is necessa ry  
to include the compress ibi l i ty  of the liquid, etc., in the equation of radial  motion. However, inasmuch as these 
zones are of inconsequential  extent, for the calculations they can be replaced by discontinuities at which the 
kinetic energy of the motion toward the center  of the bubbles is converted with a certain degree of dissipation 
into kinetic energy of radial motion directed away f rom the center. These discontinuities are indicated by dots 
in Fig. 3. 

As mentioned, strongly t ime-dependent shock waves have been observed in the experiments  of [5, 6]. In 
the case dominated by the inert ial  collapse regime, with a minimal compress ion  of the bubbles to re tard  their  
radial  motion a dras t ic  p ressu re  increase  must take place in the bubble interior,  and, accordingly, the p ressure  
will also increase  in the equivalent cell [the maximum possible value of this increase  is est imated by express ion 
(29)], so that such time-depender~t shock waves with anomalous high-frequency pressure  peaks are realized for 
B >> 1. The s t ructure  of such a t ime-dependent  shock wave with a high-frequency oscillating "tail" is shown 
schemat ical ly  in Fig. 4. 

Realizations of the regime descr ibed here with anomalous p res su re  peaks can be promoted by the breakup 
of bubbles due to instability created by the reduction of their  radii (in part icular ,  this event causes the pa ramete r  
B to increase) .  With growth of the bubbles and, hence, of the phase interface hea t - t r ans fe r  capacity of the 
liquid increases  considerably, resul t ing in the accelera ted collapse of bubbles with a finite value of k i. 

A problem still outstanding is the quantitative theoret ical  descript ion of the s t ructure  of a t ime-dependent  
shock wave with an oscillating packet, in which the medium goes over to a s ingle-phase equil ibrium state after  
executing severa l  oscillations with the dissipation of kinetic energy and the multiple diminution as well as a l -  
most complete vanishing of bubbles, with regard  for the effects of compress ibi l i ty  of the liquid and bubble 
breakup. 
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The maximum amplitude of the oscil lat ions is es t imated by express ion  (29) and, as noted above, is 
reasonably consistent with the exper imenta l  data. The most complicated problem is to predict  the lifetime of 
the oscillations or  of the oscil lating tail. This p rob lem can be significant, because the collapse of vapor bub- 
bles is accompanied by quite a few oscillations, and the tail  of the wave can be ve ry  long. 

In light of the indicated considerations,  the feasibil i ty of establ ishing the t ime- invar iant  shock s t ructure  
shown schemat ica l ly  in Fig. 3 in a liquid containing vapor  bubbles also poses an intricate fundamental problem. 
Only with continued detailed exper imental  and theore t ica l  studies will an answer be forthcoming. 

Below, we analyze the resul ts  of calculations per formed on the basis of the equations discussed above. 
All of the thermophysica l  proper t ies  are taken f rom [8]. Figure 5 shows the s t ructure  of a shockwave for 
water  containing vapor  bubbles with the following values of the pa r ame te r s  governing the initial state of the 
mixture, the wave intensity Pc, and its veloci ty v 0 relative to the preshock  medium: ~20 =0.05; P0 =1 bar; a .  = 
10 m / s e e ;  P c = 2 ;  v0=45.9 m/sec .  Curve 1 is calculated for  a bubble d iameter  2a0=10-3m, and curve 2 for 2a0= 
10 -4 m. It is evident f rom the graph that for bubbles with 2a 0 =10 -3 m the pa ramete r s  (pressures of the phases 
Pl and 1)2 and the d iameter  2a) execute severa l  oscil lations and in the monotonic regime tend to their  limiting 
postshock values. The kinetic energy  of radial  motion at f i rs t  has two or  three oscillations and then tends to 
zero.  Thus, a t ime- invar ian t  shock wave exists for the  given situation. As noted above, Eq. (37) makes the heat -  
t r ans f e r  rate too low, because the given model ignores  slip of the bubbles relative to the liquid and bubble 
breakup effects.  The effects of slip [with the use of (35)] and breakup can be est imated against the background 
of the numer ica l  solution. 

The displacement  of the bubbles relat ive to the liquid during the f irst  maximum compress ion (D~0.4) is 
equal to A/~0 .6 .  Thus, the possible maximum displacement  is approximately one third the f i rs t  minimum 
value of the diameter ,  i.e., the surface of the bubble cannot be res tored,  and the slip effect can be neglected. 

Bubble breakup can be induced, f irst ,  by dynamic differentials created in the gaseous phase during relative 
motion of the phases and, second, by re tardat ion of the radial  motion of the bubble boundaries in connection with 
the increase  of the vapor  p r e s su re  inside the bubbles as they are  compressed.  

The conditions for  bubble breakup initiated by the above-noted effects take the respect ive forms [8] 

p~ v~2a _ We > W: ~ n, (42) 

P~ B0 > Bo = ~2. (43) 
(5 

Here g is the acce lera t ion  of the liquid at the phase interface during radial  motion of the bubbles. 

It is evident f rom express ions  (42) and (43) that surface tension inhibits breakup in both cases. 

With the use of express ion  (34) for vl2, condition (42) can be writ ten in the form of a relation determining 
the dimensionless  bubble radius (D) at which breakup is possible:  

4~c~ 4~op~ (44) 
(D -3 -- D 3) D ~.~ B~, B~ -- (r ~ -- (Pe __ Po) cZ~.op~ " 

An analysis of this relation in application tothe given example shows that the condition for breakup by dynamic 
differentials is expressed  bythe inequality D ~ 0.05. 

In the given problem, however, D-~0.4 in the f i rs t  maximum compression.  Thus, the dynamic differentials 
of the gaseous phase in the given case apparently do not elicit  bubble breakup. Fo r  the given example condition 
(42) holds in the f i rs t  compress ion  of the bubbles in the wave, indicating the possibil i ty of bubble breakup in- 
duced by re tardat ion of the radial  motion of the i r  boundaries on the vapor  side. An analysis of the experiments 
of [10, 11] shows that the same effect is responsible for the instabili ty of a ir  bubbles in the case of waves with 
Pe ~ 2-3. 

The results  of the calculations indicate that when a shock wave propagates  in a mixture containing small  
bubbles it is possible for "anomalously" large pressures to be created. The occurrence of such pressure 

peaks in a disperse mixture containing "large" bubbles can be attributed to their breakup in the initial stage of 

shock compression. The breakup process in the initial stage has the effect of making the propagation of a 

shock wave in a mixture with "large" bubbles equivalent to the propagation of a wave of the same intensity, but 

in a mixture containing indivisible "small" bubbles. The factors responsible for breakup can be ascertained 
by means of the criteria (42) and (43). 
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The tendency toward the rea l iza t ion  of s t rong h igh- f requency  p r e s s u r e  " sp ikes"  in a shock wave with a 
reduct ion of the init ial  bubble d i a m e t e r  is a t t r ibutable  to the reduct ion of the heat  r e s i s t ance  between t h e p h a s e s  
as a resu l t  of the growth of the specif ic  phase in terface .  

We have ca r r i ed  out calculat ions for  liquid ni t rogen containing ni t rogen bubbles with the following p a r a m -  
e t e r s  governing the init ial  s ta te  of the mixture  and the shock intensity:  ~20 =0.05; P0 =1 bar ;  P e ~ 2 - 3 ;  2a 0 =10 -3 
m. F o r  media whose init ial  s ta te  and shock intensi ty are  close to these values ,  the ampl i f ica t ion  of shock waves 
has been observed  in expe r imen t s  [5], even though calculat ions without r ega rd  for  breakup p red ic t  that  a t i m e -  
invar iant  shock wave must  exis t  in these  cases .  Clear ly,  for  these p a r a m e t e r s  a spontaneous decomposi t ion  of 
bubbles into s m a l l e r  bubbles takes  place at the shock front,  where it is induced p redominan t ly  by the re la t ive  
motion of the phases .  The probabi l i ty  of breakup by this m e c h a n i s m  in the case  of ni t rogen bubbles is g rea te r  
than for  wa te r  bubbles due to the roughly tenfold d e c r e a s e  in the p a r a m e t e r  B l governing the threshold  of in-  
stabil i ty.  The la t t e r  resu l t  is a t t r ibutable  to the fact that, because  of the low t e m p e r a t u r e  (T0=77~K, f~ =5 kg/ 
m3), the densi ty  of ni t rogen vapor  is an o rde r  of magnitude g r e a t e r  than that  of s t e a m  (T0=373~K, p~=0.6 kg/m3). 

We note once again that the breakup of bubbles by a shock wave into a se t  of much s m a l l e r  f r agmen t s  is 
probably  at t r ibutable  in la rge  par t  to Ke lv in -He lmho l t z  instabil i ty.  This  conjecture  is  a l so  evinced, in p a r t i cu -  
lar ,  by the resu l t s  of [9]. We infer  f r o m  the foregoing d i scuss ion  that  the tendency toward  anomalous  p r e s s u r e s  
is dictated by the heat r e s i s t ance  of the liquid and depends on the t h e r m a l  diffusivity of the liquid, the bubble 
s izes ,  and the possibi l i ty  of breakup into much s m a l l e r  f ragments .  

NOTATION 

~, ~, true densities of the liquid and vapor; v, velocity; Pl, P2, mean pressure in the liquid phase and 
pressure in the bubble s; a 2, volume concentration of bubbles; n, number of bubbles per unit volum e; a, bubble radius, 
wl, w2, particle velocities of radial motion of the liquid and vapor at the phase interface; ki, kinetic energy of 
bubble motion; j, interphase mass-transfer rate per unit area of the phase interface; qo~l,, qo2, heat fluxes per 
unit area of the phase interface in the liquid and in the vapor; vi, a, viscosity and coefficient of surface tension 
of the liquid; l, specific heat of vaporization; cl, ki, specific heat and thermal conductivity of the liquid; 7, adia- 
batic exponent of the vapor; Ts(P2), vapor saturation temperature at pressure P2; Ci, sound velocity in the liquid 
phase; B, gas constant; -~, V, P, D, W, 0, Ki, dimensionless values of the vapor density, velocity, pressure, 
radius, radial particle velocities of the phases, temperature, and kinetic energy; a,=llp-0Yp~ characteristic 
velocity;  ~* =2~/p0a0, v* = 8vl /a  , a0, k*=~l/(p~ ?7 = f~0ci/p00B, L = lpOo/po ,  c h a r a c t e r i s t i c  d imens ion less  
p a r a m e t e r s .  Indices:  0, e, p re shock  and postshock equi l ib r ium s ta tes .  
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